Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells.

نویسندگان

  • H Hui
  • C Wright
  • R Perfetti
چکیده

Glucagon-like peptide-1 (GLP-1) is an incretin hormone capable of restoring normal glucose tolerance in aging glucose-intolerant Wistar rats. Whether the antidiabetic properties of GLP-1 are exclusively due to its insulin secretory activity remains to be determined. A GLP-1-dependent differentiation of pancreatic precursor cells into mature beta-cells has recently been proposed. The aim of this study was to investigate whether pancreatic ductal epithelial cells could be differentiated into insulin-secreting cells by exposing them to GLP-1. Rat (ARIP) and human (PANC-1) cell lines, both derived from the pancreatic ductal epithelium, were used to test this hypothesis. A major difference distinguishes these two cell lines: whereas ARIP cells spontaneously express the beta-cell differentiation factor islet duodenal homeobox-1 (IDX-1), PANC-1 cells are characteristically IDX-1 negative. GLP-1 induced the differentiation of ARIP cells into insulin-synthesizing cells, although it did not affect the phenotype of PANC-1 cells, as determined by fluorescence-activated cell sorting (FACS) analysis. Differentiation of ARIP cells by exposure to human GLP-1 occurs in a time- and dose-dependent manner, and this is associated with an increase in IDX-1 and insulin mRNA levels. Secretion of insulin was also induced in a parallel manner, and it was regulated by the concentration of glucose in the culture medium. Interestingly, PANC-1 cells, when stably transfected with human IDX-1, gained responsiveness to GLP-1 and were able to differentiate into beta-cells, as determined by FACS analysis, insulin gene expression, intracellular insulin content, and insulin accumulation in the culture medium. Finally, we demonstrated that the receptor for GLP-1 is constitutively expressed by ARIP and PANC-1 cells and that the mRNA level for this transcript was increased by cellular transfection with human IDX-1. In summary, our study provides evidence that GLP-1 is a differentiation factor for pancreatic ductal cells and that its effect requires the expression of IDX-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Short-activating RNA Oligonucleotide Targeting the Islet β-cell Transcriptional Factor MafA in CD34+ Cells

Upon functional loss of insulin producing islet β-cells, some patients with diabetes become dependent on life-long insulin supplementation therapy. Bioengineering surrogate insulin producing cells is an alternative replacement strategy. We have developed a novel approach using short-activating RNA oligonucleotides to differentiate adult human CD34+ cells into insulin-secreting cells. By transfe...

متن کامل

FGF-2b and h-PL Transform Duct and Non-Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes

Background: Diabetes mellitus (DM) is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF)-2b controls β-cell clusters via autocrine action, and human placental lactogen (hPL)-A increases functional β-cells. We hypothesized whether FGF-2b/hPL-A treatment induces β-cell differentiation from ducta...

متن کامل

Immunohistochemical characterization of pancreatic duodenal homeobox protein-1, neurogenin-3 and insulin protein expressions in islet-mesenchymal cell in vitro interactions from injured adult pancreatic tissues: a morphochronological evaluation

Objective(s): The use of a co-culture of islets with mesenchymal stromal cells (MSCs) is a promising therapy in islet transplantation to revert hyperglycaemia, but the resulting insulin-producing cells (IPCs) express low levels of pancreas endocrine developmental genes. This study aims to investigate the morphochronology of a co-culture of islets with MSCs from injured adult pancreata, and char...

متن کامل

تمایز بن‌یاخته‌های‌ جنینی‌ انسان‌ به‌ سلولهای‌ مولد انسولین‌

Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated se...

متن کامل

Differentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell

Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 2001